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Executive Summary
Biopharma leaders today are poised to capitalize on the power of AI to speed 
delivery of new therapeutics and drive down fast-rising costs. They recognize 
that the large data volumes produced by their scientific instruments and 
applications can be used to generate key insights that help significantly enhance 
efficiency and improve scientific outcomes. But for many biopharma companies, 
there is a gap between the vision for AI and the present reality that is difficult 
to overcome. Dependence on legacy technology, perpetuation of an inefficient 
do-it-yourself approach, and a lack of data and metadata harmonization are all 
preventing biopharma companies from closing the gap and achieving their AI 
goals. Moving forward will require a revolutionary scientific data paradigm.
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Introduction
Biopharma leaders recognize that artificial intelligence (AI) will have a tremendous impact on the life science 
industry. AI can ultimately help improve and extend human life by accelerating and enhancing scientific R&D 
while streamlining manufacturing and quality assurance/quality control (QA/QC). By using AI, biopharma 
companies can discover and speed delivery of new, transformational therapeutics—therapeutics that are 
more effective, safer, and less expensive than current drugs. At the same time, AI can help substantially 
reduce skyrocketing costs.

Executives across industries are ready to launch AI initiatives now. In fact, according to a recent report by 
Deloitte, 94 percent of business leaders surveyed agree that AI is critical to their business success in the next 
five years.1 In biopharma, companies have already invested over $2.5 billion on AI initiatives and are poised to 
spend substantially more in the coming years.2 

Those investments will be an increasing part of R&D, manufacturing, and QA/QC budgets. For example, 
Morgan Stanley estimates that AI investments will grow from 1.5 percent of R&D budgets in 2023 to 4 percent 
in 2030.3

Despite this drive to start benefiting from AI right away and the willingness to invest in AI initiatives, there is a 
significant gap between the vision for AI in biopharma and the present reality. 

Many biopharma companies are years away from implementing AI applications and running algorithms that 
can fully capitalize on the wealth of scientific data they are generating. With a do-it-yourself (DIY) approach, 
they are struggling to do the basic data preparation of curating data and making it AI ready. Companies need 
to do this critical, foundational work, but too few are able to do so efficiently and to 
begin using AI in any meaningful way. 

To advance with their AI-readiness journey, companies must lead their 
data through an immutable series of operations. First, they complete 
the integration work and assemble data from a full range of scientific 
instruments and applications. Then they must engineer this data for 
data science and AI, harmonizing it by using a standardized format 
and adding rich contextualization with consistent taxonomies and 
ontologies. At the same time, they must meet enterprise data 
governance and business security requirements. Only after all 
of these steps can they begin the actual data science work 
and start to capitalize on AI.

Why is there such a huge gap between the vision 
for AI and the present state, in which companies 
are bogged down in data preparation? What 
challenges do companies need to address 
before they can close that gap and ascend the 
data maturity pyramid?

AI

Data Analytics

Engineered Data

Replatformed Data

Raw Data
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The promise of Scientific AI in biopharma
Biopharma organizations are looking to AI to revolutionize the entire value chain for therapeutics. That 
revolution will be critical for addressing key challenges. In particular, biopharmas are spending more than 
ever on R&D, but the returns are diminishing. Last year it cost an average of $2.3 billion to bring a drug to 
market—76 percent more than a decade ago.4 During the same period, sales have slumped 25 percent on a 
per-drug basis. Both trends have contributed to a five-fold reduction in R&D productivity.

Drug development is not only costly but also long and risky. Clinical development lasts over 10 years on 
average with a measly 8 percent of drug candidates earning regulatory approval.5

The industry needs a paradigm shift—and AI could enable the required transformation.

Morgan Stanley estimates that using AI in early-stage drug development over the next decade could bring an 
additional 50 therapies to market worth over $50 billion in sales.6 A McKinsey analysis predicts that generative 
AI could unlock the equivalent of 2.6 to 4.5 percent of annual revenue ($60 billion to $110 billion) for the 
industry.7
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Executives in biopharma are becoming increasingly optimistic about the impact of AI on their business. Nearly 
half of the top 50 biopharma companies have mentioned AI on earnings calls over the past five years.8 Sanofi 
recently announced its ambition “to become the first pharma company powered by artificial intelligence at 
scale.”9

SURGING INVESTMENT IN AI
To bring AI ambitions to fruition, biopharma 
companies are ready to spend billions. According to 
one report, spending will climb from $1.64 billion in 
2023 to $4.61 billion in 2027.12 Within R&D specifically, 
AI investments will grow from 1.5 percent of R&D 
budgets in 2023 to 4 percent in 2030, according to 
Morgan Stanley.13

Top biopharma companies are building dedicated 
AI teams, with clear mandates from leadership.14 In 
late 2022, AI-related jobs accounted for 7 percent 
of new job postings by biopharma companies, more 
than double the average across all sectors.15 Most of 
these roles are likely to devote a significant portion 
of their time to data preparation. Low-quality and 
poorly curated datasets are seen as the largest barrier 
to implementing AI, according to a recent industry 
survey.16
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Recognizing the potential of AI 

AI can “improve the biggest challenge of the [pharmaceutical] 
sector, which is the productivity of R&D.”10

—Emma Walmsley, CEO of GSK 

“AI will reduce the cost of R&D [per] molecule. It has to.”11

—Christophe Weber, CEO of Takeda
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Biopharma companies are also looking to collaborate with partners to gain the necessary technology and 
know-how to carry out their AI initiatives. About 800 companies are currently applying AI to drug discovery 
and development.17 Many are startups providing software as a service (SaaS) offerings, custom data sciences 
services, drug discovery (drug candidate as a service), and clinical trial support.18 

R&D partnerships between leading biopharma organizations and AI companies have grown over the last six 
years19—half of the 50 largest biopharma companies have entered into partnerships or licensing agreements 
with AI companies. This group has also ramped up direct investment in AI companies.20 

THE SCIENTIFIC USE CASES FOR AI
How can life science companies use AI?

Virtually every stage in the pharmaceutical value chain has the potential to be transformed by AI.

Research Development Manufacturing/QC

Target discovery
What genes or proteins are linked to a 
disease?

ADMET prediction
How long does a drug stay active in the 
body and where does it go?

Process control & optimization
What conditions can produce high 
volume quickly at low cost?

Predictive maintenance
When should maintenance of 
equipment be performed?

Digital quality control
When do production anomalies occur 
and what are their root causes?

Formulation development
What are the ideal excipients and their 
ratio?

Safety prediction
What is the safety profile and adverse 
effects of the drug?

Efficacy prediction
What are the likely clinical trial 
outcomes of the drug?

Trial optimization
How should clinical trials be designed 
and who to include?

Virtual screening
What compounds in existing libraries 
are likely to modulate the target?

De novo design
What novel molecules are most likely to 
bind and modulate the target? 

Drug repurposing
What are possible new targets for 
approved drugs?

Knowledge reuse
What are the emerging trends and 
insights in the scientific literature?

Process development
What methods and materials are 
optimal for drug production?

Featured below

Continuous method verification
Are analytical methods performing as 
expected throughout manufacturing?
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Research

Target discovery: AI algorithms can mine diverse datasets—including scientific literature, multi-
omics, clinical records, and public databases—to find proteins, genes, or pathways correlated with 
specific diseases or conditions. The result could be a ranked list of promising targets for further 
investigation as well as the corresponding genetic profiles of patients expected to benefit from 
treatment.

Virtual screening: Researchers need to find molecules that can bind to and modulate a target. 
Virtual screening moves the initial rounds of assays in silico, simulating drug-target binding. AI can 
improve the speed and accuracy of virtual screening while reducing costs by replacing costly wet 
lab experiments. Organizations could analyze millions of compounds this way, then validate the 
most promising ones in the lab.

De novo design: The millions of compounds amassed by biopharma company libraries are only a 
tiny sliver of the molecular species possible. AI algorithms can explore the entire chemical space to 
find molecules with favorable pharmacological properties. De novo design can greatly accelerate 
drug discovery while yielding superior drugs, since this approach is not limited by what can be 
found in the natural world. 

Drug repurposing: AI can uncover new targets for known drugs. Scientists can model interactions 
between an existing, already-approved drug and a collection of protein structures to predict new 
therapeutic applications. This approach streamlines discovery and reduces costs while minimizing 
risks, since the drug’s safety and manufacturing processes are well established. 

Development

ADMET prediction: Accurately forecasting how a drug will behave within human subjects is a major 
challenge. AI can leverage existing and future datasets, including positive and negative results from 
clinical studies, to accurately model absorption, distribution, metabolism, excretion, and toxicity 
(ADMET) properties in patients. This approach eliminates unfavorable candidates much earlier in 
development. Failing faster will avoid significant downstream efforts and costs.

Formulation development: Effective therapies combine active pharmaceutical ingredients with 
other excipients to facilitate delivery, enhance efficacy, reduce side effects, and improve shelf life. 
AI tools can rapidly probe a large parameter space and recommend optimal formulations to test, 
greatly increasing the speed and efficiency of this process.

Process development: AI can expedite process development and technology transfer by optimizing 
drug production for scale-up, reproducibility, and cost. Leveraging historical and newly generated 
datasets, machine learning models can rapidly identify critical process parameters and forecast 
the best conditions for drug synthesis.
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Manufacturing and QC

Process control and optimization: AI-driven systems can continuously monitor and analyze vast 
amounts of real-time data from sensors, instruments, and production lines. Predictive analytics 
and ML algorithms can anticipate process deviations, enabling proactive adjustments to maintain 
proper conditions. AI can also optimize complex bioprocess parameters to reduce the risk of product 
variability, increase yields, improve product quality, and ensure compliance.

Predictive maintenance: With AI, biopharma companies can shift from reactive to proactive 
maintenance strategies. Through continuous data collection and analysis, AI applications can identify 
subtle anomalies and wear patterns that might signal impending machinery faults or maintenance 
needs. This use of AI could make failures of manufacturing and laboratory equipment a thing of the 
past. 

Digital QC: Consistent and safe production of pharmaceuticals requires rigorous QC. Using AI, labs can 
automate the analysis of complex datasets, helping scientists identify patterns, trends, and anomalies 
more quickly. Predictive algorithms can preemptively flag potential out-of-spec results, enabling a 
“review by exception” approach that speeds up the release of products. Timely interventions can 
prevent production disruptions and compliance issues, potentially saving millions of dollars.21 If 
deviations occur, AI can unearth root causes fast.  

THE BENEFITS OF AI
By unlocking the full value of their scientific data troves, biopharma companies can expand their portfolios 
with drugs that deliver markedly higher ROI. What are the high-level benefits of AI?

• Faster time to market: It usually takes over a decade to bring a drug to market. Much of this time is spent
gathering and analyzing scientific data to determine if a potential drug can advance to the next stage. AI
can boost the efficiency of many of these steps by orders of magnitude, slashing development time.

• Reduced costs: AI can help increase staff productivity and optimize the utilization of resources in labs and
manufacturing plants, cutting costs. Moreover, by improving the quality of drug candidates in the pipeline,
AI can minimize expensive late-stage failures or low-quality batches.

• Reduced risks: Organizations can use AI to minimize errors and deviations; address data integrity issues
that threaten drug safety, efficacy, and quality; and streamline compliance.

• Better scientific outcomes: AI can help open new avenues of scientific inquiry and drive a wave
of breakthroughs: new therapeutic targets and chemical/biological compound structures, novel
mechanisms of action and delivery, innovative manufacturing processes, and so on.
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Impediments to Scientific AI
Given AI’s potential for delivering significant benefits and the commitment to AI among biopharma leaders, 
why are biopharma companies slow to launch AI initiatives? And why are they struggling to harness the value 
of the AI applications they have already implemented?  

The answer centers on data. The vast volumes of data that biopharma companies generate and collect are 
not ready to be used by advanced analytics, AI, or machine learning (ML) applications. 

For many organizations, data is stuck in siloed environments and proprietary formats, unable to be moved or 
assembled into the large-scale datasets needed for AI.

• Siloed: Data is often trapped in isolated storage environments—from external drives and workstations
to file shares and tape archives. Companies need to liberate their data from these decades-old silos,
centralizing data and making it easily accessible by AI applications.

• Proprietary: Many scientific instruments produce data in vendor-proprietary formats, locking teams
into small vendor ecosystems with limited applications. To compare, visualize, analyze, or use data
for AI, teams need to break free of these walled gardens. They must transform proprietary and often
unstructured data into a single, standardized format. That format must have harmonized metadata
taxonomies (definitions of data elements and structures) and ontologies (descriptions of relationships
among data elements).

• Static: Siloed data in proprietary formats is illiquid—it cannot easily be moved and shared. To streamline
workflows, share data and information, facilitate collaboration, and capitalize on data for AI applications,
biopharma companies need data to flow seamlessly across instruments, applications, departments, and
even among organizations.

• Subscale: AI algorithms and ML models require high-quality, large-scale datasets. But when data is stuck
in siloed environments, in proprietary formats, companies cannot assemble high-quality, large-scale
datasets.

“The first thing we’ve learned is the importance of having 
outstanding data to actually base your ML on. In our own shop, 
we’ve been working on a few big projects, and we’ve had to spend 
most of the time just cleaning the datasets before you can even 
run the algorithm. It’s taken us years just to clean the datasets.” 

—Vas Narasimhan, M.D.  
CEO, Novartis
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What is keeping organizations from producing the AI-native data they need? There are three primary 
obstacles: legacy architectures, an entrenched DIY approach to scientific IT, and a lack of data standards. 

Obstacle #1: Legacy data architecture
Biopharma organizations often attempt to progress with AI initiatives using a data architecture that isn’t built 
for AI. In particular, many are using legacy scientific data management system (SDMS) solutions originally 
designed to store and archive data for compliance.

An SDMS has three primary functions: 

• Collecting data: An SDMS collects data and PDF files from instruments and applications.

• Cataloging data: An SDMS can provide some contextualization for data and files by adding metadata. That
contextualization is critical for finding and using data after it is collected.

• Archiving data: Organizations can use an SDMS to archive data in a compliant manner. When necessary,
teams can restore data from the archive to another location and then work with that data using the
original software.

Despite the utility of an SDMS for these functions, most traditional SDMSs present essential limitations for 
closing the AI gap. 

Inflexible data flow

Traditional SDMSs have few options for data flow and processing. An SDMS often becomes an archival 
dumping ground because it cannot accommodate the sophisticated, dynamic data liquidity required 
by biopharma teams. For example, R&D teams should be able to send data to multiple destinations—
including informatics systems, data warehouses, analytics applications, visualization tools, and AI 
applications. But the simple archiving offered by many SDMSs cannot provide that flexibility. 

Little data engineering

SDMSs are designed to store data but not transform it. Traditional SDMSs do not engineer data 
for scientific use cases. They do not convert data from proprietary formats into a standardized, 
harmonized, future-proofed format that is engineered specifically for data science, analytics, or AI. To 
analyze data, teams would need to undertake significant curation and transformation work.

Poor discoverability 

Some SDMSs add metadata to files. But because SDMSs typically do not harmonize metadata 
taxonomies and ontologies, scientists can have difficulty discovering new or historical datasets. Data is 
searchable and consumable only if someone knows precisely what terms or labels to query. In many 
cases, lab scientists end up re-running an assay or an experiment because that’s easier than finding 
historical data. As a result, SDMSs often become a black hole for experimental data: Data is sent to the 
SDMS but then forgotten. 
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Inflexible accessibility

SDMSs are closed, siloed data repositories. Many organizations want to access data from the apps 
they use daily, such as electronic lab notebooks (ELNs). Others want to consume data in analytics or AI 
applications. But a traditional SDMS typically requires organizations to access data exclusively through 
the SDMS interface, making ELN, analytics, and AI use impossible. Exporting data to other environments 
to support these applications is cumbersome.

Lack of scalability

Traditional SDMSs are largely implemented on premises and cannot be scaled easily. Every upgrade 
requires changes for every component—including the database, servers, and file storage. If these 
solutions use cloud services at all, they use the cloud as simply another data center: The cloud might 
add resources but at the expense of adding management complexity. Consequently, SDMSs are not the 
best environment for assembling the large-scale datasets required for AI.

SDMSs simply aren’t designed to prepare data for AI. Some vendors might tack on capabilities to address 
some of the limitations of their solutions. But at their core, most SDMSs cannot provide sufficient data 
liquidity, allow adequate discoverability, enable data accessibility, or efficiently scale up to support the massive 
data volumes needed for AI algorithms. 

Obstacle #2: The DIY model
The problems with legacy architectures are compounded by legacy mindsets. Too many scientific 
organizations maintain a DIY approach to data integration and management. With that DIY approach, internal 
IT teams or third-party consultants build rigid point-to-point data integrations for specific instruments and 
applications. These teams might enable some degree of contextualization or data harmonization, but they 
typically remain focused on specific integrations and their related data. They are not future-proofing data or 
implementing end-to-end scientific workflows that will enable the AI journey.

There are multiple, interrelated problems with the DIY approach.

Time-consuming and costly

Creating, validating, and thoroughly documenting point-to-point integrations is extremely labor 
intensive. As teams work to fulfill current needs, they must also maintain and continuously update 
integrations, ensuring support for the latest versions of software. Once integrations are established, 
moving data within and between research, development, manufacturing, and QA/QC workflows might 
still require error-prone manual data transcription tasks using rigid, fragile, and costly point-to-point 
integrations. All of this work requires a unique combination of scientific and technical expertise that not 
all organizations possess.

Inflexible

IT project-based point-to-point integrations yield static, complex, and inflexible data architectures that 
produce subscale and fragmented raw datasets. Those datasets cannot be accessed or shared across 
the enterprise, and they cannot be used for AI.
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Limited application options
The DIY approach often leaves files trapped in proprietary formats. As a result, organizations cannot 
use their preferred third-party, best-of-breed analytics or AI applications with that data. Without access 
to these applications, and without the ability to achieve economies of scale, companies struggle to 
produce the insights needed to innovate.

Poor scalability
The DIY model often creates an “n-of-1” internal customer business model: In other words, IT 
creates individual data integrations for each workflow or team. Without the ability to reuse software 
components or data integrations, a company cannot achieve any economies of scale. It certainly cannot 
create the kind of Scientific AI factory needed to produce large-scale datasets for AI applications.  

Not designed for an end-to-end scientific workflow
DIY efforts are often led by IT teams, not scientists. They typically do not have end-to-end scientific 
workflows in mind as they design and build the solution. As a result, scientists may be left with a 
piecemeal solution that addresses distinct integration needs without enabling the seamless flow of 
data across an entire scientific process.

Unable to produce AI-native data
Frequently data engineered through the DIY approach is still not ready for AI applications. Data must be 
well engineered, drawing on a deep understanding of the scientific data workflow. It should be allowed 
to flow across applications and teams, and to be assembled into the large-scale datasets required for 
AI. DIY teams are generally solving short-term, low-level, point-to-point data integration problems, not 
seeing the big picture of how all scientific data must be prepared for enabling AI across the enterprise.

Given all the problems with the DIY paradigm, it might seem clear that this approach to data integration and 
management is on a terminal path. But many organizations hold onto this paradigm. Some believe they can 
develop better, more customized solutions than those that are commercially available. Yet this bespoke 
approach means they cannot leverage industry best practices and build a future-proof solution.

Many maintain the DIY paradigm simply because of inertia. The DIY approach is too well entrenched. Still, 
organizations need to recognize that DIY is keeping them from reaching their AI goals, and they need to see a 
viable alternative before making a change.

Obstacle #3: A lack of harmonization
A lack of harmonization among data formats and metadata presents a third key obstacle to moving forward 
with AI initiatives. Scientific instruments and applications typically produce files in vendor-specific proprietary 
formats, with unique metadata taxonomies and ontologies, that have limited accessibility outside vendors’ 
walled gardens. Without harmonization of data formats and metadata, organizations are unable to use best-
of-breed applications to analyze data. And they are unable to assemble the data from all of their instruments 
and applications into the high-quality, large-scale datasets needed for AI.
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DATA FORMATS 
There have been several efforts to create data format standards in the life science industry. But none has 
been widely adopted. 

• The Allotrope Foundation developed a somewhat complex Allotrope Data Format (ADF) and then
subsequently created the Allotrope Simple Model (ASM) to standardize the structure of instrument data.

• Analytical Information Markup Language (AnIML) is a standard for storing and sharing any analytical
chemistry and biological data.

• The Standardization in Lab Automation (SiLA) consortium is working to standardize software interfaces
specifically for working with robotic automation. But the consortium isn’t providing a true solution for
harmonizing the actual data for other data usages.

• The Pistoia Alliance created the Unified Data Model (UDM) project to produce an open data format for
storing and exchanging experimental information about compound synthesis and testing.

• Individual vendors have attempted to establish their own formats as “standards.”

In parallel with efforts at creating data format standards, an international consortium of scientists and 
organizations introduced FAIR data principles with the aim of optimizing the reuse of data. FAIR data is 
findable, accessible, interoperable, and reusable. These principles are a good start, but they are still only 
principles—they are insufficient to overcome the obstacles to standardization.

Why have there been relatively few attempts at standardization? And why have proposed standards failed to 
gain traction? There are few incentives for life science technology companies to establish or adopt standards. 

The quest for competitive advantage
Where there is competition for market share, instrument vendors try to outperform one another, 
producing equipment with increasingly impressive specifications. They develop proprietary data 
formats adapted and optimized for their specific methods.

Legacy designs
Meanwhile, much of the instrument control and data acquisition software available today was initially 
built on legacy technology and meant to be installed on PCs in a laboratory. Each application was 
designed to give scientists all the essential functionality to complete their work without leaving that 
application. Vendors have had no motivation to develop an open data format or push for standards.

Customer retention
Maintaining proprietary data formats also helps vendors retain existing customers. Using proprietary 
data formats, instrument and application vendors bind scientists to their particular ecosystem. 

Standardization challenges
Different instruments and modalities produce different bits of information—it is difficult to find one size 
to fit all. Moreover, the efforts of consortia to create standards have shown how challenging it is to 
achieve compromise among multiple parties. 
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Without standards for data formats, biopharma companies are often left with multiple data silos across the 
enterprise. Data is trapped in vendor-specific data formats within on-premises environments. Preparing data 
for AI requires organizations to invest time and money for harmonization.

METADATA
Harmonization efforts must include not only data formats but also the taxonomies and ontologies of the 
metadata. Metadata often differs from instrument to instrument and from user to user. 

Instruments, applications, and users add context in a variety of formats. As organizations collect data from a 
variety of instruments and applications, they are left with a variety of terms to describe the same data—which 
becomes clear when comparing metadata between departments, sites, regions, and geographies.

The taxonomies and ontologies in this metadata must be harmonized. The vocabulary of terms that captures 
information about uses, samples, materials, equipment, processes, results, and more is vital for finding, 
interpreting, analyzing, and assembling data. Without harmonization, organizations will struggle to find, 
compare, and reuse data from all of their different sources—and they will be unable to assemble that data 
into the large-scale datasets needed for advanced analytics and AI.

Harmonization will likely be an ongoing effort because taxonomies 
and ontologies can evolve. For example, the Allotrope Taxonomies 
and Ontologies included with the Allotrope Data Format were initially 
based on existing vocabularies but then grew to several thousand 
terms and properties as more companies began using the data format. 
That flexibility is helpful as organizations refine their workflows and use 
cases over time—but the evolving taxonomies and ontologies must be 
maintained.

Closing the gap 
Biopharma leaders today are driven to launch new AI initiatives to advance science. They see the promise of 
using AI in a wide range of R&D, manufacturing, and QA/QC use cases. By applying AI to their vast collections 
of data, they can accelerate time to market for new therapeutics, reduce costs, minimize risks, and ultimately 
deliver better scientific outcomes. 

But many companies face a wide gap between the vision of their leadership and the reality of their ability to 
execute on it. They are unable to move past the integration of instruments and applications—an essential 
but early step in the immutable progression of operations required to produce AI-native data. They are 
hampered by legacy data architectures and limited by entrenched DIY mindsets. And without standard data 
formats, or harmonized taxonomies and ontologies, they struggle to free their data for reuse. 

The vocabulary of 
metadata

Taxonomy: Defines elements 
and their organization
Ontology: Describes 
relationships among elements
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